Forms Mode User’s Manual

Forms-Mode version 1.2, patchlevel 7

July 1991

Johan Vromans
Jjv@mh.nl

Copyright (©) 1989,1990,1991 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

31 Forms mode

Forms mode is an Emacs major mode for working with simple plain-text databases in a
forms-oriented manner. In forms mode, the information in these files is presented in an
Emacs window in a user-defined format, one record at a time. Forms can be inspected
read-only (viewing) or modified and updated.

Forms mode is not a simple major mode, but requires two files to do its job: a control
file and a data file. The data file holds the actual data which will be presented. The control
file describes how it will be presented.

31.1 What is in a forms
Let’s illustrate forms mode with an example. Suppose you are looking at your /etc/passwd
file, and your screen looks as follows:

====== /etc/passwd ======
User : root Uid: O Gid: 1
Name : Super User

Home : /

Shell: /bin/sh

As you can see, the familiar fields from the entry for the super user are all there, but
instead of being colon-separated on one single line, they make up a forms.

The contents of the forms consists of the contents of the fields of the record (e.g. “root”,
“07, “17, “Super User”) interspersed with normal text (e.g “User : 7, “Uid: 7).

You can define yourself how text and fields will be used to make up the forms.

When you modifiy the contents of the forms, it will be analyzed and the new contents
of the fields of this record will be extracted. It possible, the file will be updated with the
new contents.

31.2 Data file format

Files for use with forms mode are very simple — each record (line) forms the contents one
form. Each record is supposed to consist of a number of fields. These fields are separated
by the value of the string forms-field-sep, which is a TAB by default.

Fields may contain text which shows up in the forms in multiple lines. These lines are
separated in the field using a pseudo-newline character which is defined by the value of the
string forms-multi-line. Its default value is a Control-K character. If it is set to nil
multiple line fields are prohibited.

31.3 Control file format

The control file serves two purposes.

First, it defines the data file to use, and its properties.

2 Forms Mode User’s Manual

Second, the Emacs buffer it occupies will be used by the forms mode to display the
forms.

The contents of the control file are evaluated using the Emacs command eval-current-
buffer, hence must contain valid Emacs-lisp expressions. These expressions must set the
following lisp variables to a suitable value:

forms-file
This variable must be set to the name of the data file.
Example:

(setq forms-file "my/data-file")

forms-format-list
This variable describes the way the fields of the record are formatted on the
screen. See the next section for details.

forms—-number-of-fields
This variable holds the number of fields in each record of the data file.
Example:

(setq forms-number-of-fields 10)

An error will be given if one of the above values has not been set.

Other variables that may be set from the control file are optional. Most of them have
suitable default values.

forms-field-sep
This variable may be used to designate the string which separates the fields in
the records of the data file. If not set, it defaults to a string containing a single
TAB character.
Example:

(setq forms-field-sep "\t")

forms-read-only
If set to a value other than nil, the data file is treated read-only. If the data
file can not be written into, read-only mode is enforced. The default value for
forms-read-only is derived from the access permissions of the data file.
Example:

(set forms-read-only t)

forms-multi-line
This variable may be set to allow multi-line text in fields. It should be set to a
string of one character, which denotes the pseudo new-line character to be used
to separate the text lines.
Its default value is Control-K (octal 013). If set to nil, multi-line text fields
are prohibited.
It may not be a character contained in forms-field-sep.
Example:

(setq forms-multi-line "\C-k")

forms-forms-scroll
See Section 31.6 [Forms Mode Commands], page 5, for the description.

Chapter 31: Forms mode 3

forms-forms-jump
See Section 31.6 [Forms Mode Commands|, page 5, for the description.

forms-new-record-filter
The control file may define a function forms-new-record-filter, or set
forms-new-record-filter to such a function. If so, this function is called
when a new record is created to supply default values for fields.

forms-modified-record-filter
The control file may define a function forms-modified-record-filter, or set
forms-modified-record-filter to such a function. If so, this function is
called when a record is modified, just before writing the modified record back
to the data file.

31.4 The forms format description

The value of the variable forms-format-1list is used to specify the format of the forms.
It must be a list of formatting elements, each of which can be a string, number, lisp list or
a lisp symbol that evaluates to one of these. The formatting elements are processed in the
order they appear in the list.

A string formatting element is inserted in the forms “as is”.

A number element selects a field of the record. The contents of this field are inserted.
The first field of the record has number 1 (one).

A lisp list specifies a function call. This function is called every time a record is
displayed, and its result, that must be a string, is inserted in the forms. The function
should do nothing but returning a string. The fields of the record being displayed are
available to this function as the list forms-fields and can be accessed using (nth FIELD
NUMBER forms-fields). Fields are numbered starting from 1 (one).

A lisp symbol must evaluate to one of the above possibilities.

If a record does not contain the number of fields as specified in forms-number-of-
fields, a warning message will be printed. Excess fields are ignored, missing fields are set
to empty.

The control file which shows your /etc/passwd file as demonstrated in the beginning of
this document might look as follows:

;; This demo visits /etc/passwd.

(setq forms-file "/etc/passwd")
(setq forms-number-of-fields 7)

(setq forms-read-only t) ; to make sure
(setq forms-field-sep ":")
(setq forms-multi-line nil) ; not allowed

(setq forms-format-list

"User : " 1

4 Forms Mode User’s Manual

" Gid: " 4
n \1’1\1’1"
"Name : " 5
" \n\n“
"Home : " 6
n \Il\Il"
"Shell: " 7
n \Il"))

When functions are to be used in forms-format-list they must be quoted to prevent
them from being evaluated too early:

(setq forms-format-list
(1list
"====== " forms-file " ======\n\n"
"User : " 1
> (make-string 20 7-)

))
Alternatively, instead of quoting the functions, the whole list may be quoted:

(setq forms-format-list

"====== " forms-file " ======\n\n"
"User : " 1
(make-string 20 7-)

)

Upon startup, the contents of forms-format-1ist are validated. If errors are encoun-
tered, processing is aborted with an error message which includes a descriptive text. See
Section 31.9 [Error Messages], page 8, for a detailed list of error messages.

31.5 Modifying The Forms Contents

If a forms is not read-only, it’s contents can be modified.

All normal editor commands may be used to change the forms. There is no distinction
between the “fixed” text and the text from the fields of the records. However, upon com-
pletion, the forms is parsed to extract the new contents of the fields. The “fixed” portions
of the forms are used to delimit the fields, these portions should therefore not be modified
to avoid the risk that the field contents cannot be determined. Moreover, ambiguous field
contents, which can not be discriminated from “fixed” text, must be avoided.

If the contents of the forms cannot be recognized properly, this is signaled using a
descriptive text. See Section 31.9 [Error Messages|, page 8, for more info. The cursor will
indicate the last part of the forms which was successfully parsed.

If forms-modified-record-filter has been set, this function is called before the new
data is written to the data file. The function is called with one argument: a vector that
contains the contents of the fields of the record. Fields can referenced or modified using the

Chapter 31: Forms mode 5

lisp functions aref and aset. The first field has number 1 (one). The function must return
the (possibly modified) vector to the calling environment.

(defun my-modified-record-filter (record)
;; modify second field
(aset record 2 (current-time-string))
record ; return it

)

(setq forms-modified-record-filter ’my-modified-record-filter)

31.6 Forms mode commands

M-x forms-find-file file

Visits file, runs eval-current-buffer on it, and puts the buffer into forms-mode. The
first record of the data file will be loaded and shown.

The modeline will display the major mode "Forms" followed by the minor mode "View"
if the file is visited read-only. The number of the current record (n) and the total number
of records (t) in the file is shown in the modeline as "n/t".

For example:

--%%-Emacs: passwd-demo (Forms View 1/54)----A11------—-

M-x forms-find-file-other-window file
This command is similar to forms-find-file, but visits the file in another window.

If the buffer is not read-only, you may change the buffer to modify the fields in the
record. When the current record is left, e.g. by switching to another record, the contents
of the buffer are parsed using the specifications in forms-format-list, and a new record
is constructed which replaces the current record in the data file. Fields of the record which
are not shown in the forms are not modified; they retain their original contents.

Most forms mode commands are bound to keys, and are accessible with the conventional
C-c prefix. In read-only mode this prefix is not used. See Section 31.7 [Key Bindings],
page 7, for the default key bindigs used by forms mode.

The following commands are available within forms mode.

forms-next-record
shows the next record. With a prefix argument, show the n-th next record.

forms-prev-record
shows the previous record. With a prefix argument, show the n-th previous
record.

forms—jump-record
jumps to a record by number. A prefix argument is used for the record number
to jump to. If no prefix argument is supplied, a record number is asked for in
the minibuffer.
If an invalid record number is supplied, an error message is displayed reading
the offending record number, and the allowable range of numbers.

forms-first-record
jumps to the first record.

Forms Mode User’s Manual

forms-last-record

jumps to the last record. Also re-counts the number of records in the data file.

forms—next-field

jumps to the next field in the forms. With a numeric argument: jumps that
many fields, or to the first field if there are not that many fields left.

Jumping to fields is implemented using markers, which are placed in front of
the fields. If the contents of the forms are modified, the markers are adjusted.
However, if text around a marker has been deleted from the screen and inserted
again it is possible that this marker no longer points at its field correctly. See
Section “Markers” in the GNU Emacs Lisp Manual, for more information on
markers.

forms-view—-mode

switches to read-only mode. Forms mode commands may no longer be prefixed
with C-c.

forms-edit-mode

switches to edit mode. Forms mode commands must be prefixed with C-c.
Switching to edit mode is only possible if write access to the data file is allowed.

forms-insert-record

create a new record, which is inserted before the current record. An empty
form is presented, which can be filled in using familiar editor commands. With
a prefix argument: the new record is created after the current one.

If a function forms-new-record-filter was defined in the control file, this
function is called to fill in default values for fields. The function is passed
a vector of empty strings, one for each field. For convenience, an additional
element is added so the numbers of the elements are the same as the numbers
used in the forms description. The function must return the (updated) vector.

Instead of defining the function, forms-new-record-filter may be set to a
function.

Example:

(defun my-new-record-filter (fields)
(aset fields 5 (login-name))
(aset fields 1 (current-time-string))
;; and return it
fields)
(setq forms-new-record-filter ’my-new-record-filter)

forms-delete-record

deletes the current record. You are prompted for confirmation before the record
is deleted unless a prefix argument has been provided.

forms-search regexp

searches for regexp in all records following this one. If found, this record is
shown.

The next time it is invoked, the previous regexp is the default, so you can do
repeated searches by simply pressing RET in response to the prompt.

Chapter 31: Forms mode 7

revert-buffer
reverts a possibly modified forms to its original state. It only affect the record
currently in the forms.

forms-exit
terminates forms processing. The data file is saved if it has been modified.

forms-exit-no-save
aborts forms processing. If the data file has been modified Emacs will ask
questions.

describe-mode
gives additional help.

save-buffer
saves the changes in the data file, if modified.

If the variable forms-forms-scrolls is set to a value other than nil (which it is, by
default), the Emacs functions scroll-up and scroll-down will perform a forms-next-
record and forms-prev-record when in forms mode. So you can use your favourite page
commands to page through the data file.

Likewise, if the variable forms-forms-jump is not nil (which it is, by default), Emacs
functions beginning-of-buffer and end-of-buffer will perform forms-first-record
and forms-last-record when in forms mode.

After forms mode is entered, functions contained in forms-mode-hooks are executed to
perform user defined customization.

31.7 Key bindings

This section describes the key bindings as they are defined when invoking forms mode.

All commands must be prefixed with C-c when editing a forms. If a forms is read-only, C-c
is not used. The only exception to this rule is forms-next-field, which is bound to TAB
in all maps.

C-c TAB forms-next-field
C-c SPC forms—-next-record

C-c < forms-first-record
C-c > forms-first-record
C-cd forms-delete-record
C-ce forms-edit-mode
C-ci forms-insert-record
C-cj forms-jump-record
C-cn forms—-next-record
C-cp forms-prev-record
C-cq forms-exit

C-c s regexp
forms-search

C-cv forms-view-mode
C-cx forms-exit-no-save
C-c? describe-mode

C-c DEL forms-prev-record

8 Forms Mode User’s Manual

31.8 Miscellaneous

A global variable forms-version holds the version information of the current implementa-
tion of forms mode.

It is very convenient to use symbolic names for the fields in a record. The function
forms-enumerate provides an elegant means to define a series of variables to consecu-
tive numbers. The function returns the higest number used, so it can be used to set
forms—number-of-fields also:

(setq forms-number-of-fields
(forms—-enumerate
> (fieldl field2 field3 ...)))

fieldl will be set to 1, field2 to 2 and so on.

Care has been taken to localize the current information of the forms mode, so it is
possible to visit multiple files in forms mode simultaneously, even if they have different
properties.

Since buffer-local functions are not available in this version of GNU Emacs, the def-
initions of the filter functions forms-new-record-filter and forms-modified-record-
filter are copied into internal, buffer local variables when forms-mode is initialized.

If a control file is visited using the standard find-file commands, forms mode can be
enabled with the command M-x forms-mode.
Forms mode will be automatically enabled if the file contains the string "-*- forms —*-"
somewhere in the first line. However, this makes it hard to edit the control file itself so
you’d better think twice before using this.

The default format for the data file, using TAB to separate fields and C-k to separate
multi-line fields, matches the file format of some popular Macintosh database programs, e.g.
FileMaker. So forms-mode could decrease the need to use Apple computers.

31.9 Error Messages
This section describes all error messages which can be generated by forms mode.

’forms-file’ has not been set
The variable forms-file was not set by the control file.

’forms-number-of-fields’ has not been set
The variable forms-number-of-fields was not set by the control file.

’forms-number-of-fields’ must be > 0
The variable forms-number-of-fields did not contain a positive number.

’forms-field-sep’ is not a string

’forms-multi-line’ must be nil or a one-character string
The variable forms-multi-line was set to something other than nil or a
single-character string.

’forms—multi-line’ is equal to ’forms-field-sep’
The variable forms-multi-1line may not be equal to forms-field-sep for this
would make it impossible to distinguish fields and the lines in the fields.

Chapter 31: Forms mode 9

’forms-format-list’ has not been set
’forms-format-list’ is not a list
The variable forms-format-1list was not set to a lisp 1ist by the control file.

Forms error: field number XX out of range 1..NN
A field number was supplied with a value of XX, which was not greater than
zero and smaller than or equal to the number of fields in the forms, NN.

Forms error: not a function FUN
The first element of the lisp list specified in forms-format-list did not have
a function value.

Invalid element in ’forms-format-list’: XX
A list element was supplied in forms-format-list which was not a string,
number nor a lisp list.

Parse error: not looking at "..."
When re-parsing the contents of a forms, the text shown could not be found.

Parse error: cannot find "..."
When re-parsing the contents of a forms, the text shown, which separates two
fields, could not be found.

Parse error: cannot parse adjacent fields XX and YY
Fields XX and YY were not separated by text, so could not be parsed again.

Record has XX fields instead of YY
The number of fields in this record in the data file did not match forms—-number-
of-fields. Missing fields will be set to empty.

Multi-line fields in this record - update refused!
The current record contains newline characters, hence can not be written back
to the data file, for it would corrupt it.
probably a field was set to a multi-line value, while the setting of forms-multi-
line prohibited this.

Record number XX out of range 1..YY
A jump was made to non-existing record XX. YY denotes the number of
records in the file.

Stuck at record XX
An internal error prevented a specific record from being retrieved.

31.10 Examples

The following example exploits most of the features of forms-mode. This example is included
in the distribution as file forms-d2.el.

;3 demo2 -- demo forms-mode -*- emacs-lisp —*-
;3 SCCS Status : demo2 1.1.2

;3 Author : Johan Vromans

;; Created On : 1989

;3 Last Modified By: Johan Vromans

Forms Mode User’s Manual

;; Last Modified On: Mon Jul 1 13:56:31 1991
;3 Update Count 2
;5 Status : OK

;3 This sample forms exploit most of the features of forms mode.

;5 Set the name of the data file.
(setq forms-file "forms-d2.dat")

;; Use ’forms-enumerate’ to set field names and number thereof.
(setq forms-number-of-fields
(forms-enumerate

> (arch-newsgroup ; 1
arch-volume ; 2
arch-issue ; and ...
arch-article ; ... so
arch-shortname ; on
arch-parts
arch-from
arch-longname
arch-keywords
arch-date
arch-remarks)))

;3 The following functions are used by this form for layout purposes.
(defun arch-tocol (target &optional fill)
"Produces a string to skip to column TARGET. Prepends newline if needed.
The optional FILL should be a character, used to fill to the column."
(if (null £ill)
(setq fill 7))
(if (< target (current-column))
(concat "\n" (make-string target fill))
(make-string (- target (current-column)) fill)))
(defun arch-rj (target field &optional fill)
"Produces a string to skip to column TARGET minus the width of field FIELD.
Prepends newline if needed. The optional FILL should be a character,
used to fill to the column."
(arch-tocol (- target (length (nth field forms-fields))) £ill))

;; Record filters.
;3 This example uses the (defun ...) method of defining.
(defun forms—new-record-filter (the-record)

"Form a new record with some defaults."

(aset the-record arch-from (user-full-name))

Chapter 31: Forms mode 11

(aset the-record arch-date (current-time-string))
the-record ; return it

;; The format list.
(setq forms-format-list
(list
"====== Puyblic Domain Software Archive ======\n\n"
arch-shortname
" - " arch-longname
n \n\nll
"Article: " arch-newsgroup
"/" arch-article
n n
> (arch-tocol 40)
"Issue: " arch-issue

> (arch-rj 73 10)

"Date: " arch-date

n \n\nll

"Submitted by: " arch-from
n \nll

> (arch-tocol 79 7-)

n \nll

"Keywords: " arch-keywords
n \n\nll

"Parts: " arch-parts
"\n\n====== Remarks ======\n\n"
arch-remarks

)

;; That’s all, folks!

31.11 Credits
Forms mode is developed by Johan Vromans <jv@mh.nl> at Multihouse Research in the
Netherlands.

Harald Hanche-Olsen <hanche@imf .unit.no> supplied the idea for the new record filter,
and provided better replacements for some internal functions.

Bugfixes and other useful suggestions were supplied by cwitty@portia.stanford.edu,
Jonathan I. Kamens, Ignatios Souvatzis and Harald Hanche-Olsen.

This documentation was slightly inspired by the documentation of “rolo mode” by Paul
Davis at Schlumberger Cambridge Research <davisYscrsulysdr.slb.com@relay.cs.net>.

None of this would have been possible without GNU Emacs of the Free Software Foun-
dation. Thanks, Richard!

Concept Index

F

forms-mode

P

13

Variable Index

forms—-field—Sepuuuuuiiiiiiiiiiinnnnnn 2
forms-fields........... i 3
forms-file......... il 2
forms-format-list 2,3
forms-forms-jump............. ... 2,7

forms-forms-scroll 2,7

15

forms-mode-hooks 7
forms-multi-line............ 2
forms-number-of-fields 2
forms-read-onlycooviiiiiiiiiiiiiiinn 2
forms-version......... ... i 8

Function Index

B

beginning-of-buffer.............

D

describe-mode........... .. i

E

end-of-buffer.......... il
eval-current-buffer...............

F

forms-delete-record..................o ..
forms-edit-mode
forms-enumerate i,
forms-exit....... ..
forms-exit-no-save........... il
forms-find-file........ L.

forms-find-file-other-window

17

forms-first-record.............., 5
forms-insert-record........... 6
forms-jump-record...................... ... 5
forms-last-record..............ccoiiiiiiin... 5
forms-modified-record-filter.............. 3,4
forms-new-record-filter...................... 3
forms-next-field................, 6
forms-next-record.............iiiiiiiiiiin.. 5
forms-prev-record............................. 5
forms-search.......... i 6
forms-view-modeiiiiiii i 6
R

revert-buffer........... 6
S

save-buffer........... 7
3o oo 3 e 1) & 7

SCTOLLUP « oottt et 7

Table of Contents

31 Formsmode.................................... 1
31.1 Whatisinaformsc i 1
31.2 Datafileformat 1
31.3 Control file format................. 1
31.4 The forms format description.....................oo L. 3
31.5 Modifying The Forms Contents............. ..., 4
31.6 Forms mode commands................ ... 5
31.7 Key bindingsooiii 7
31.8 MisSCellaneous 8
31.9 Error Messagesovvuuiiiin i 8
3110 Examplest e 9
3111 Credits. ..o 11

Concept Index L. 13

Variable Index...................................... 15

Function Index 17

	31 Forms mode
	What is in a forms
	Data file format
	Control file format
	The forms format description
	Modifying The Forms Contents
	Forms mode commands
	Key bindings
	Miscellaneous
	Error Messages
	Examples
	Credits

	Concept Index
	Variable Index
	Function Index

